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WP1 in a Nutshell

Motivation: Enable domain scientists to focus on their
primary research problem, assured that the underlying
infrastructure will manage the low-level cpu scheduling
and data handling issues.

Use Case: A domain scientist should be able do:
— Submit a simulation with a single click

* Which may run on hundreds of processors across
the state & access distributed data

— Get informed when results are ready

- All low level details should be transparent to the domain
scientist

— site selection, scheduling, data movement, fault
tolerance, automation ..etc

CCT: Center for Computation & Technology @ LSU



WP1 Team

Senior Personnel: Allen, Brenner, Katz, Kosar (LSU), Box, Dua (Tecl

WP-1 Funded Personnel:

Gaduate Students: Esma, Jagadish, Mehmet, Zhiefeng (LSU),
Thanadech (Tech)

Postdocs: TBD
WP-1 Supporting Personnel:
Staff: Prats, Honggao (LONI), Archit, Andrei (LSU)

Students: Vinay, Ibrahim, Jack, Ismail, Emir, Sirish (LSU),
Pradeep, Harpreep (Tech)
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WP1 Progress

Basic Grid services deployed across LONI
- Lustre, Globus, Condor, GridFTP

Distributed storage (PetaShare) deployed across six
LONI sites

- 170 TB usable (220 TB raw), unified name space

User friendly PetaShare client tools developed
- petashell, petafs, pcommands, petasearch

Stork data scheduler enhanced
- Whole datasets, parallel streams, checksums

End-to-end workflow management of several science
driver applications enabled

New site selection algorithms developed
New data mining algorithms developed

CCT: Center for Computation & Technology @ LSU



WP1 Demonstrations

. End-to-end workflow management
. Dynamic site selection

. Distributed data access & retrieval

. Protein structure classification tools
. Medical Image classification tool

. Discovery of DNA folding units

CCT: Center for Computation & Technology @ LSU



DEMO - 1:

End-to-end Workflow Management
for DNA folding
E. Bahsi, T. Kosar (LSU), T. Bushop (Tulane)

CCT: Center for Computation & Technology @ LSU



Biosensors: MD Fast Track Study

high throughput simulation workflow:
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Running DNA Folding Application
step-by-step (Before)

1. Connect to local machine (ssh)

2. Run 01-setup.tcsh R

3. Run 02-mk-dna.awk

4. Run 03-setup-amber.tcsh B

5. Run 04-setup-sims.tcsh )

6. Run 05-rsync -

7. Connect to cluster (ssh)

8. Run 06-namd —

9. Run 07-min1.analysis

10. Run 08-check.sims }
_

11. Run 09-rsync
12. Connect to local machine (ssh)

Input Preparation

Data Stage-in

Running Simulations lteratively

Output Parsing

Data Stage-out

CCT: Center for Computation & Technology



Workflow-enabled Application
(After)

Input Input
Preparation Preparation
1 2

Input
Preparation
3
;onnect to local machine (ssh)
. : Input
Jondor_submit_dag DNA.dag Preparation

Stage-in
(stork)

66|

namd_0 namg_1
mpi [] [] [] [ ] [] [] [] [] m i
© Parse
Output

Advantage
*Babysitting for wo
«Stork for Data Tra
Stage-out *Parallelization of r
stork *Submit file Gener:
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DEMO - 2:
Dynamic Site Selection for

Reservoir Modeling
E. Babsi, T. Kosar, G. Allen, M. Tyagi, C. White (I.SU)

CCT: Center for Computation & Technology @ LSU



Reservoir Modeling Workflow
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oncrete Workflow Mapping

parameter_sampler

r

task_farming 0
/ | \
! r !
flow_model 0 (PBS) flow_model_1 (Loadleveler) flow_model_2 (Condor)

\ , /
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check_sensor_data
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assimilation_0 (PBS) assimilation_1 (LoadLeveler) assimilation_2 (Condor)

\ - /

compute_gain




£

- Site Selection Mechanisn

FOR COMPUTATION
[ECHNOLOGY

« Two Site Selectors are implemented

* Querying Sites for information about jobs and queue (#
of free nodes, total # of nodes, # of jobs in the queue)

S uery site
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DEMO - 3:
Distributed Data Access & Retrieval
L. Akturk, 1. Kosar, X. Wang (LSU) et al.

CCT: Center for Computation & Technology @ LSU
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DEMO - 4.
Protein Structure Classification Tool
P. Chowriappa, S. Dua (Lalech), H. Thompson (ILSUHSC)

CCT: Center for Computation & Technology @ LSU



Synopsis of Cybertools Efforts
S. Dua et al. @ LA Tech, H. Thompson et al. @

. Information fusion algorithms (automated
metadata extraction and information retrieval for data
mining)

— Fusion of stereochemical properties for
automated protein core discovery and
classification

Medical Image Classifier systems

— Patient classification for Diabetic
Retinopathy images

R

LSU Health Sciences Cent
NEW ORLEANS

Data Mining Research Laboratory
hitp://dmrl.latech.edu

atec




« Information fusion: Integration of

protein stereochemical properties for

Protein sequence based tools are not sensitive enough tc

discover similarity between proteins because of the
exponential growth in diversity of sequences.

We have developed a Graph Theory based Data Mining

Framework to extract and isolate protein structural
features that sustain invariance in evolutionary proteins.

e have
pothesized that
oteins of the
me homology
ntain conserved
'drophobic
sidues that
chibit analogous
sidue interaction
itterns in the
|ded state.

Dataset of PDB
files

For Individual Hydrophobicity Scale

A 4
Creation of : —
. Protein Cregtlon of Identification L
Extraction of > weighted >
Structure - —> . of Centers
3D Graph "~ 162 Hydrophobicity and = ~>| Creation of
coordinated [ ap -+ - > Scale i - Summar
Information using Graph Neighborhoods |  — — y
Delaunay . Graph
Tessellation ¥
Creation of
Interaction Graphs
For Each Protein
Coherent ) Filtering Subgraphs Partitioning of
Subgraph Sheauonion based on Summary Graph

Mining

Feature Vector

Discriminatory Power

for each Protein
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Methodology

(a) )

Creation of Protein Structure Graphs Gayax(P)

Example: SCOP Class Small Protein: 1CRN(A)

(a) Protein Structure Graph using Delaunay
Tessellations with distance set at 8 Angstroms

(b) The Adjacency Matrix of the Protein Structure Graph
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(b) Components (subzraph)

Summary Graph of protein 1CRN(A)

a) Identification of connected components

b) Filtering of connected components using
Mutual Information

:!'%Q.
DO
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C(t)=a C(ty)=e C(t;)=a C(ty=e

e C(ts)=s C(tg)=s
H(a)={t,,ts} H(e)={tst3}
(b) " H(s)={ts,te}

Identification of centers and neighborhoods.

a) Representation of the central residue “C” uniquely colored as “e”
(green), “a” (red), “s” (blue), and their respective neighborhoods “H”
(identified here by the shades of tetrahedra). The table shows each
tetrahedron (t), its respective residues, and its respective weights.

b) The resultant Interaction Graph (IG), where a proximity edge is drawn
between centers if they share vertices in common.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

f€dr

With five different hydrophobicity scales, we obtain a set of five
Interaction Graphs (IG) representing protein 1CRN(A). The vertices for
each /G have a common vertex set V (Ghydn(P)), but possess different edge
sets.




« Protein Mining (snapshot of
results)
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g. Composition of amino acids in conserved residues of the summary graphs compared with the entire
otein representative set. On the Y-axis is the percentage of amino acids and on the X-axis: a. hydrogen
nding interactions, b. Ooi number in an 8 A radius around the amino acid and c. solvent accessible
ntact area as a percentage of residue accessibility.

f.: P. Chowriappa, S. Dua, J. Kanno and H. Thompson, “Protein Structure Classification Based on
nserved Hydrophobic Residues”, to appear in the IEEE/ACM Transactions on Computational Biology
1 Bioinformatics.

f.: S. Dua, P. Chowriappa and R. Rajagopalan, “Spectral Coherence Feature Extraction from
reochemical Scales for Protein Classification”, under review for IEEE/ACM Transactions on
mputational Biology and Bioinformatics.




Tool Features

Protein Structure Classification Based on Conserved Hydrophobic Residues

— Data Preperation
— Load Dat
C1-Select C2 Select | Independant Protein |
— Independant Proteins
Training Set l1 naTA L]
(*° C1_Select
& C2 Select Load Independant Protein |

Description

ASTRAL ASTRAL -version: 1.73

ASTRAL SCOP-sid: dingia_

ASTRAL SCOP-sun: 92047

ASTRAL SCOP-sccs: a.123.1.1

ASTRAL Souwrce-PDB: Thy?

ASTRAL Source-PDB-REVDAT: 23-SEP-03
ASTRAL Region: a:

ASTRAL ASTRAL-SPACE 0.63

ASTRAL ASTRAL-AFROSPACK: 0.63
ASTRAL Data-updated-refease: 1.67

— Classification

Choose Classifier (= Random Forest ( Haive Bayse

Training Set |

10 Fold CV¥ |
Supply Test Protein |
CLEAR |

— RandomForest Seftings

Number of Trees I 10

Number of Seeds 1

MNumber of Features | g

CONFUSION MATIX
ab <--classified as
10 | a = all-alpha

00 |b = all-beta

e ROC Area

TP Rate FP Rate Pr Recall F-M
Class
1 0 1 1 1 ? all-alpha

0 0 0 0 0 ? all-beta

Process Complete

304

20

10

-10

40
40

20

PDBid :nq7

(DMRL) Data Mining Research Laboratry
College of Engineering and Science
Louisiana Tech University

Ruston, LA - 71270

Provides for the identification of conserved regions within proteins of the same family
Integration of five physico-chemical properties

Classification using Random Forest and Naive Bayes classifier

Provides for classification of independent proteins into specific classes
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In Depth Analysis

Contact Matrix 1AN-A
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— Classification

Choose Classifier (¢ Random Forest { Haive Bayse

RandomForest Settings

Number of Trees I 10 i
Number of Seeds I 1 10 Fold CV I

. . . Number of Features ID— Supply Test Pr oteinl
Provides a graphical representation of the Summary =
Graph for better viewing of conserved hydrophobic

residues ONFUSION AT s

16 0| a = all-alpha
010 | b = all-beta
Gauge the classification performance using
standard measures of calibration e ETARED ACCIRACES

TP Rate FP Rate Precision Recall F-Measure ROC Are:
Class

1 0 1 1 1 1 all-alpha

1 0 1 1 1 1 all-beta




nformation fusion: Gene Rankine
nrough fusion of Synchronizatio

The cell cycle, or cell-division cycle, is the series
of events that take place in a cell leading to its

replication.
The cell-division cycle is one of the most
fundamental processes of life, allowing cells to

multiply and faithfully pass on their genetic
information to future generations.
The first critical task in understanding such cyclic
systems is to identify the genes that are
periodically expressed during the cell cycle —
focus of our work.

Our Approach

A. DATA PREPROCESSING
A.1 Interpolation

A.2 Denoising

A.3 Intersecting Gene Sets
A.4 Normalization

—

cell prepares
to divide

cell division 8
{mitosis) . &

cycle begins

b Yoo
‘-’) cell grows
1 <) G1

cell decides
whether to
~nmbinye

replication S
of DNA

B. DATA ALIGNMENT .—H

C. INFORMATION FUSION
cdc15 @ cdc28

!

E. CLASSIFICATION USING GENETIC
ALGORITHMS

E.1 Training: Top-ranked (300, 500,

800) genes

E.2 Testing: Published benchmark

(B1, B2 and B3: known cyclic genes)

D. FEATURE EXTRACTION
D.1 Principal Component
Analysis

D.2 Skewness Moment

D.3 Kurtosis Moment




Gene ranking (snapshot of

M1: Zhao et al. (2001) M2: Johansson et al. (2003)
g o “\edet5 Alpha ’ (A : cdc15
150 /69 \ 159 o0 [~ ) e )
7\ 45 / / ~\ 80 /O
R385 N 9 N ~{ 37 > 29 )\~
192 154
chS cdc28
Lichtenberg et al. (2005) Our Results (Integrated)
" \,;\ < . cde15 Alpha-cdc15 -~ < I Alpha-cdc28
99 66 106\ 91 [ 51\ @2
89 T~ A\ 144 D
[ 46 N 39 ) 28 N B\~
126 - 109
cdczl cdc15-cdc28

Agreement across experiments. Venn
)ram based on the top 300 genes from
1 experiment are shown for the
hods that provide ranked lists for the
vidual and integrated experiments.

Original timeseries

Aligned timeseries

Fig. Data alignment for alpha and
cdcl5 datasets.

ferences: A. Alex, S. Dua, P. Chowriappa, “Gene Ranking through the Integration of
nchronization Experiments”, to appear in the Proceedings of 2008 IEEE Symposium on
ymputational Intelligence in Bioinformatics and Computational Biology (IEEE-CIBCBOS8).
Dua, P. Chowriappa and A. E. Alex; “Ranking through Integration of Protein-similarity for
entification of Cell-cyclic Genes”, to appear in the Proceedings of the Biotechnology and

oinformatics Symposium (BIOT-2008).




Conclusion and Directions

Information Fusion and Data Mining

In conclusion, the work has demonstrated evaluation
studies on independent sets of protein classes for
performance benchmarking purposes.

— Other uses: hypothesis generation, protein model verification, an
classification.

— 1 IEEE-TCBB, 1- IEEE-CIBCB and 1-BioT publication.

The work is a result of collaboration between investigato
from:

— Louisiana Tech University

— Louisiana State University Health Sciences Center at New Orleans.

Have an independent tool to share with biologists
(available through our website).

— Port tool for specific protein biotechnologist from LSUHSC
(April-09, thanks to H. Thompson)

Current effort: We are developing an efficient parallelized
version of the algorithm for analyzing entire PDB (Oct. 2008).




DEMO - 5:
Medical Image Classification Tool
S. Dua, H. Singh (Lalech), H. Thompson (ILSUHSC)

CCT: Center for Computation & Technology @ LSU



« Mammogram Classification using
Weighted Rules based Classificatic

« We have developed a novel
method for the classification c

Classification medical images (mammogram
mmogrn Methodology using a unique weighted
— association rule based classifie
) * Isomorphic association rules a
= derived between various textu

= components extracted from

ICIassifiersTraining I_Qassi_ﬁiion) Seg ments Of Images,

sun | « These discriminatory rules are

Ll then used for the classificatior
through exploitation of their
intra—- and inter—-class

Rigorous experimentation has been performed to evaluate the
ules’ efficacy under different classification scenarios.

The algorithm delivers accuracies as high as 89%, which far
urpasses the accuracy rates of other rule based classification
achniques.
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Classification

Matching
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Class Level Rule Sets
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|
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Combined Sum of
Weighis Class Label

Matching Vertical
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Figure. Classification Mechanism

»Form horizontal weights of ru
»Form vertical weights for rule

» Take query image and find
matching rules

»Find corresponding horizonta
and vertical weights

»Add these weights to form
cumulative sum

»Classify to the class with high
weight

»Display images from same cla




[ 0

Mammogram classification

(snapshot of results)

Sensitivity Accuracy of different runs

120

100 41— : “
80 N
60 N - <
40
20

Sensitivity

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Different splits of data

—o— 70%
80%
90%

(@)

Precision Accuracy for different runs

100

95

oo I — N

80

Precision

75

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Different splits of data

—— 70%
80%
90%

(b)

"he change of Precision (a) and Recall

b) with different percentages of
raining versus testing data.

True Classes

Reported
Nor(r“n!a SSeSBenign Malign
Normal 22 0 0
Benign 1 5 0
Malign 1 0 3

The confusion matrix for three
classes considered for
classification. The number indicat
the number of cases reported.

Reference: S. Dua, H. Singh, HW
Thompson, “Associative
Classification of Mammograms
using weighted Rules based
Classification”, under review for
Expert Systems and Applications
Journal (Elsevier).




Diabetic Retinopathy Patient
Classification

Patient classification in medical imaging h:
a range of applications spanning both the
biomedical and healthcare delivery domair

We have developed a unique classifier for
automated integration and classification o
images of patients .

Patients were suffering from either Non-
proliferative Diabetic Retinopathy (NPDR) c
Proliferative Diabetic Retinopathy (PDR).




« Diabetic Retinopathy Patient

ent | Common FA FD (%) FA (%)

d rules (avg.)
42 455 0 30
309 409 0.48 24
4 420 0 33
15 351 3.6 30
15 465 0 36
40 505 15 32
728 114 0.14 9
27 457 0.92 29
671 101 0.4 8

o
o

N
N
n

15.0

Percentage (%)

~
3]

D L L L "
2nd Level 3rd Level 4th Level Sth Level 6th |

O ¥

75

66

57

48

Number of Rules

39

30 *
2nd Level 3rd Level 4th Level 5th Level 6th |

Level of Association Rules

Reference: S. Dua, V. Jain, H.W. Thompson, “Patient Classification using
\ssociation Mining of Clinical Images”, appeared in the Proceedings of
"he Fifth IEEE International Symposium on Biomedical Imaging (ISBI ’08)




L Conclusion and Directions
Image Classification

We can autonomously classify images based on discover:
content, rather than user-supplied metadata.

— 1 IEEE-ISBI publication, 1 under review.

The work is a result of collaboration between investigato
from:

— Louisiana Tech University
— Louisiana State University Health Sciences Center at New Orleans.

The tool is not specific to mammograms or DR images.
— Can we easily extended (without recoding) to other image domain

e

Data Mining Research Laboratory
http://dmri.latech.edu

LSU Health Sciences Cent
NEW ORLEANS




DEMO - 6:

DNA Folding Units Discovered by
Data Mining
N. Brenner et al (1.5U)

CCT: Center for Computation & Technology @ LSU



IMAGE FUSION AND DATA MINING

Faculty:

Project Coordinator:

Graduate Students:

Integration with
other investigators:

Collaborators:

Dr. S. Sitharama lyengar (LSU)
Dr. Nathan E. Brener (LSU)

Dr. Bijaya B. Karki (LSU)

Dr. Hilary Thompson (LSUHSC

Dr. Dimple Juneja

Dr. Hua Cao
Rathika Natarajan
Archit Kulshrestha
Harsha Bhagawaty
Asim Shrestha
Jagadish Kumar
L EVAGEGTE
Dipesh Bhattarai

Dr. Allen, Dr. Acharya, Dr. Bishop,
Dr. Blake, Dr. Soper

LSU Health Sciences Center (LSUHSC)
LATech
Air Force Institute of Technology




DATA MINING

Antibody
Modeling
(Bishop,
Blake)

Data Mining
(lyengar,
Brener)

Small
Molecule
Sensors
(Soper)

Immuno-
sensors
(Cortez)




Data Mining Algorithms

Searching for features of interest in large
data sets

Potential CyberTools applications:
— Antibody modeling (Bishop, Blake)
— Small molecule sensors (Soper)

— Immunosensors (Cortez)

Test problem

— Protein Databank (PDB). Look for common
protein folding units (can be of variable
length)




New Data Mining Algorithm

New efficient clustering algorithm to
classify proteins according to common
folding units. Based on conformational
angle representation to reduce
parameters.

» Represent the protein structure as a
series of conformational angles

> Partition the proteins into fragments
(folding units) of a specified size

» Cluster the fragments into groups




xample of Randomly Selected Protei




ommon Folding Units Discovered by Data Minii
Randomly Selected Proteins

1ash, 1bsr, 1cca, 1cew, 1clm, 1crn, 1cct, 1erb, 1fut, 1hng,
1hoe, 1lbu, 1mka, 1mng, 1pkp, 1udi, 1utg, 1yal, 2vab, 5pti

3698 fragments
Group 1 514 fragments
Amino

| Acid phi. psi
> GLN -60.078 -41.741
| LEU -69.310 -35.875
VAL -65.116 -46.320
7 GLY -67.025 -36.399
PHE -62.244 -39.936
\\ TYR -66.128 -38.417
LEU -64.114 -37.476
GLY -70.167 -32.912

From 1mka
o helix




ommon Folding Units Discovered by Data Minir

Randomly Selected Proteins

1ash, 1bsr, 1cca, 1cew, 1clm, 1crn, 1cct, 1erb, 1fut, 1hng,
1hoe, 1lbu, 1mka, 1mng, 1pkp, 1udi, 1utg, 1yal, 2vab, 5pti

3698 fragments
Group 2 Group 3 Group 4
188 fragments 79 fragments 61 fragments
From 1erb From 1bsr From 1lbu

 pleated sheet




Milestones and Future Work

)ct 2007- Jan 2008

- Designed new data mining algorithm

an 2008- Aug 2008

- Implemented new algorithm for large data sets

- Tested algorithm on Protein Data Bank

- Verified that algorithm finds features of interest
(common protein folding units)

- This data mining tool runs fast and handles large
data sets

uture Work

- Apply this software tool to the data used by
the science drivers (Bishop, Blake, Soper,
Cortez)




Thank You!




